2 PERCOLATION TIMES IN TWO { DIMENSIONALMODELS FOR EXCITABLE MEDIAJanko

نویسنده

  • Janko Gravner
چکیده

The three-color Greenberg{Hastings model (GHM) is a simple cellular automaton model for an excitable medium. Each site on the lattice Z 2 is initially assigned one of the states 0, 1 or 2. At each tick of a discrete{time clock, the connguration changes according to the following synchronous rule: changes 1 ! 2 and 2 ! 0 are automatic, while an x in state 0 may either stay in the same state or change to 1, the latter possibility occurring ii there is at least one representative of state 1 in the local neighborhood of x. Starting from a product measure with just 1's and 0's such dynamics quickly die out (turn into 0's), but not before 1's manage to form innnite connected sets. A very precise description of this \transient percolation" phenomenon can be obtained when the neighborhood of x consists of 8 nearest points, the case rst investigated by S. Fraser and R. Kapral. In addition, rst percolation times for related monotone models are addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Percolation times in Two{dimensional Models for Excitable Media Percolation times in Two{dimensional Models for Excitable Media

The three-color Greenberg{Hastings model (GHM) is a simple cellular automaton model for an excitable medium. Each site on the lattice Z 2 is initially assigned one of the states 0, 1 or 2. At each tick of a discrete{time clock, the connguration changes according to the following synchronous rule: changes 1 ! 2 and 2 ! 0 are automatic, while an x in state 0 may either stay in the same state or c...

متن کامل

Percolation times in Two–dimensional Models for Excitable Media

The three-color Greenberg–Hastings model (GHM) is a simple cellular automaton model for an excitable medium. Each site on the lattice Z is initially assigned one of the states 0, 1 or 2. At each tick of a discrete–time clock, the configuration changes according to the following synchronous rule: changes 1 → 2 and 2 → 0 are automatic, while an x in state 0 may either stay in the same state or ch...

متن کامل

Random graph asymptotics on high-dimensional tori

We investigate the scaling of the largest critical percolation cluster on a large d-dimensional torus, for nearest-neighbor percolation in high dimensions, or when d > 6 for sufficient spread-out percolation. We use a relatively simple coupling argument to show that this largest critical cluster is, with high probability, bounded above by a large constant times V 2/3 and below by a small consta...

متن کامل

Water Flooding Performance Evaluation Using Percolation Theory

Water flooding is a well-known secondary mechanism for improving oil recovery. Conventional approach to evaluate the performance of a water flooding process (e.g. breakthrough and post breakthrough behavior) is to establish a reliable geological reservoir model, upscale it, and then perform flow simulations. To evaluate the uncertainty in the breakthrough time or post breakthrough behavior, thi...

متن کامل

THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL

The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996